
CS 61B Discussion 8 Spring 2017
1 More Running Time
Give the worst case and best case running time in Θ(·) notation in terms of M and N.

(a) Assume that comeon() ∈Θ(1) and returns a boolean.
1 for (int i = 0; i < N; i += 1) {
2 for (int j = 1; j <= M;) {
3 if (comeon()) j += 1;
4 else j *= 2;
5 }
6 }

2 Recursive Running Time
For the following recursive functions, give the worst case and best case running time in the appro-
priate O(·), Ω(·), or Θ(·) notation.

(a) Give the running time in terms of N.
1 public void andslam(int N) {
2 if (N > 0) {
3 for (int i = 0; i < N; i += 1) {
4 System.out.println("datboi.jpg");
5 }
6 andslam(N / 2);
7 }
8 }

(b) Give the running time for andwelcome(arr, 0, N) where N is the length of the input
array arr.

1 public static void andwelcome(int[] arr, int low, int high) {
2 System.out.print("[");
3 for (int i = low; i < high; i += 1) {
4 System.out.print("loyal ");
5 }
6 System.out.println("]");
7 if (high - low > 0) {
8 double coin = Math.random();
9 if (coin > 0.5) {

10 andwelcome(arr, low, low + (high - low) / 2);
11 } else {
12 andwelcome(arr, low, low + (high - low) / 2);
13 andwelcome(arr, low + (high - low) / 2, high);
14 }
15 }
16 }

CS 61B, Spring 2017, Discussion 8 1

(c) Give the running time in terms of N.
1 public int tothe(int N) {
2 if (N <= 1) {
3 return N;
4 }
5 return tothe(N - 1) + tothe(N - 1);
6 }

(d) Extra Hard! Give the running time in terms of N

1 public static void spacejam(int N) {
2 if (N == 1) {
3 return;
4 }
5 for (int i = 0; i < N; i += 1) {
6 spacejam(N - 1);
7 }
8 }

3 Hey you watchu gon do?
For each example below, there are two algorithms solving the same problem. Given the asymptotic
runtimes for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither
is always faster, explain why. Assume the algorithms have very large input (so N is very large).

(a) Algorithm 1: Θ(N), Algorithm 2: Θ(N2)

(b) Algorithm 1: Ω(N), Algorithm 2: Ω(N2)

(c) Algorithm 1: O(N), Algorithm 2: O(N2)

(d) Algorithm 1: Θ(N2), Algorithm 2: O(logN)

(e) Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)

Would your answers above change if we did not assume that N was very large?

CS 61B, Spring 2017, Discussion 8 2

4 More Extra Problems [Final FA15]
If you have time try, to answer this challenge question. For each answer true or false. If true,
explain why and if false provide a counterexample.

(a) If f (n)∈O(n2) and g(n)∈O(n) are positive-valued functions (that is for all n, f (n),g(n)> 0),
then f (n)

g(n) ∈ O(n).

(b) If f (n) ∈Θ(n2) and g(n) ∈Θ(n) are positive-valued functions, then f (n)
g(n) ∈Θ(n).

CS 61B, Spring 2017, Discussion 8 3

