
CS 61B Discussion 13 Spring 2016
1 Quicksort

(a) Sort the following unordered list using stable quicksort. Assume that the pivot you use is
always the first element and that we use the 3-way merge partitioning process described in
lecture and lab last week. Show the steps taken at each partitioning step.
18, 7, 22, 34, 99, 18, 11, 4

-18-, 7, 22, 34, 99, 18, 11, 4
-7-, 11, 4 | 18, 18 | 22, 34, 99
4, 7, 11, 18, 18 | -22-, 34, 99
4, 7, 11, 18, 18, 22 | -34-, 99
4, 7, 11, 18, 18, 22, 34, 99

(b) What is the worst case running time of quicksort? Give an example of a list that meets this
worst case running time.

Θ(n2). Running quicksort on a sorted list will take Θ(n2) if the pivot chosen is always the
first or last in the subarray. In general, the worst case is such that the partitioning scheme
repeatedly partitionins an array into one element and the rest. At each level of recursion,
you will need to do Θ(n) work, and there will be Θ(n) levels of recursion. This sums up to
1+2+ ...+n.

(c) What is the best case running time of quicksort? Briefly justify why you can’t do any better
than this best case running time.

Θ(n logn). The optimal case for quicksort occurs if you can choose a pivot such that the left
partition and right partition are of equal sizes. At each level of recursion, you will need to do
Θ(n) work, and there will be Ω(logn) levels of recursion. Also, it would violate the sorting
lower bound from lecture (for comparison based sorts).

(d) What are two techniques that can be used to reduce the probability of quicksort taking the
worst case running time?

1. Randomly choose pivots. 2. Shuffle the list before running quicksort.

2 Comparing Sorting Algorithms
When choosing an appropriate algorithm, there are often several tradeoffs that we have to consider.
For the following sorting algorithms, give the expected space complexity and time complexity in
the worst case, as well as whether or not each sort is stable.

Time Complexity Space Complexity Stable?
Insertion Sort Θ(n2) 1 Yes

Heapsort Θ(n logn) 1 No
Mergesort Θ(n logn) Θ(n) Yes
Quicksort Θ(n logn) Θ(logn) No

CS 61B, Spring 2016, Discussion 13 1

Note that a lot of these depend on implementation. For mergesort, we use an auxiliary array to do
the merging, and that takes theta(n) memory. There is an in-place variant, but it is a terrible mess.
When mergesorting linked lists, mergesort is still N space, since we create N single item Queues.

(a) For each unstable sort, give an example of a list where the order of equivalent items is not
preserved.
Heapsort: 1a, 1b, 1c
Quicksort: 1, 5a, 2, 5b, 3
Note that if using quicksort that randomizes the array, any array could

yield instability.

(b) In general, what are some other tradeoffs we might want to consider when designing an
algorithm?
1. Readability when other engineers are using your algorithm.

2. Constant factors in runtime, especially when working with small
inputs.

3 Bounding Practice
Given an array, the heapification operation permutes the elements of the array into a heap. There
are many solutions to the heapification problem. One approach is bottom-up heapification, which
treats the existing array as a heap and rearranges all nodes from the bottom up to satisfy the heap
invariant. Another is top-down heapification, which starts with an empty heap and inserts all
elements into it.

(a) Why can we say that any solution for heapification requires Ω(n) time?
In order to check that an array satisfies the heap invariant, we have to

at least look at every element, which takes linear time.

(b) Give the worst-case runtime for top-down heapification in Θ(·) notation. Why does this
mean that the optimal solution for heapification takes O(n logn) time?
Worst-case runtime for top-down heapification is Θ(n logn). This means

that the optimal solution for heapification takes O(n logn) time since
at least one solution for heapification takes O(n logn) time.

(c) Extra: Show that the running time of bottom-up heapify is Θ(n). Not extra: Is bottom-up
heapification asymptotically optimal?

Some useful facts:
∞

∑
i=0

xi =
1

1− x

Taking the derivative of both sides:

∞

∑
i=0

ixi =
x

(1− x)2

CS 61B, Spring 2016, Discussion 13 2

Running time of heapify is:

logn

∑
i=0

i
n

2i+1 =
n
2

(
logn

∑
i=0

i
(

1
2

)i
)

≤ n
2

(
∞

∑
i=0

i
(

1
2

)i
)

=
n
2

1
2

(1
2)

2

= Θ(n)

Since the running time of bottom-up heapify is Θ(n) and any solution for heapification re-
quires Ω(n), bottom-up heapification is asymptotically optimal.

There is also a simpler solution at slide 64 of:

http://www.cs.princeton.edu/courses/archive/fall13/cos226/lectures/99Collections+24PriorityQueues.pdf.

Essentially, the idea is just that each level roughly doubles the work, so the total runtime
dependency on N is linear.

CS 61B, Spring 2016, Discussion 13 3

