
CSM 61B Sorting Algorithms
Spring 2017 Week 13: April 18, 2017

1 Asymptotics Potpourri

Algorithm Best-case Worst-case Stable

Selection Sort Θ(N2) Θ(N2) Depends

Insertion Sort Θ(N) Θ(N2) Yes

Merge Sort Θ(N log N) Θ(N log N) Yes

Quicksort Θ(N) Θ(N2) Depends

Heapsort Θ(N log N) Θ(N log N) Hard

2 Vertigo
2.1 We have a list of N elements that should be sorted, but to our surprise we recently

discovered that there are at most k pairs out of order, or k inversions, in the list.
As a small example, the list { 0, 1, 2, 6, 4, 5, 3 } contains 5 inversions:
(6, 4), (6, 5), (6, 3), (4, 3), (5, 3).

For each value of k below, state the most efficient sorting algorithm and give a tight
asymptotic runtime bound.

(a) k ∈ O(log N)

Insertion sort is the most efficient in this case because its runtime is O(N + k).
The overall runtime bound for insertion sort in this scenario is O(N).

(b) k ∈ O(N)

Insertion sort for the same reason above. The overall runtime bound for in-
sertion sort in this scenario is O(N).

(c) k ∈ O(N2)

Merge sort, quicksort, or heap sort would be ideal here since the number of
inversions causes insertion sort to run in O(N2) runtime. Using one of the
three sorts listed earlier yields a runtime in O(N log N) in the normal case.



2 Sorting Algorithms

3 QuickCo
Malicious Mallory, a sinister hacker, has been hired by a competitor to break into
QuickCo, the world leader in sorting algorithms, and tamper with its famous
Quicksort algorithms by making them as slow as possible. Mallory succeeded
in unlocking the mainframe, but now she needs your help in slowing QuickCo’s
algorithms down to a halt!

int[] data = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

3.1 First, Mallory decides to change the way QuickCo chooses a pivot for Quicksort.

Given the int[] data, what choice of pivot would cause the worst-case runtime
for Quicksort?

First, last, or alternating first-last.

3.2 Mallory finds an algorithm which always selects the middle element but she is
unable to gain write access to it. However, she discovers a way to intercept the
incoming data and rearrange it before the algorithm runs.

Given the int[] data, rearrange the numbers such that the algorithm will run in
its worst-case time.

{ 6, 7, 8, 9, 1, 2, 3, 4, 5 }

3.3 Does the worst-case runtime of Quicksort depend on the array order, pivot choice,
or both? Why?

The worst-case runtime of Quicksort depends on both the array order and the
choice of pivots. The worst-case always occurs when the pivot’s final position is on
an end of the array, which means it was either the smallest or the largest element.



Sorting Algorithms 3

4 Pivotal Choice
4.1 For each pivot selection strategy below, what is the best, average and worst case

runtime?

The best case and average case runtime for quicksort in each scenario is still in
Θ(N log N).

(a) Always choose the first value in the list.

If we always select the first value as a pivot, the values in the list will de-
termine the runtime. If we have a sorted or reverse sorted array, selecting the
first value will only reduce the problem size by a single value during each call:
we essentially have selection sort! The runtime in this worst-case scenario is
Θ(N2).

But if the values in the list are randomly shuffled, then choosing the first value
not degrade into the worst-case runtime.

(b) Always find and choose the median value in the list. Assume finding the
median takes O(N) time where N is the length of the list.

The worst case runtime in this scenario will be in Θ(N log N) including the
time to find the median (which can be found in linear time using the median
of medians algorithm). In reality, the additional cost associated with finding
the median is usually not worth it over simply selecting a random value.

Even though median-finding takes linear time, quicksort normally needs to
spend linear time bucketing values into less-than, equal-to, and greater-than
buckets anyways so the asymptotic runtime is not affected.

(c) Always choose a random pivot.

It is possible for this to degrade to Θ(N2) runtime in the worst case as well.
If we pick a random pivot from an array we have a 1

N probability of selecting
the smallest value and, after that, a 1

N−1 of selecting the next smallest, and so
forth. The total probability of selecting the smallest value every time is 1

N! .

Although it is possible for for quicksort to run in Θ(N2), it becomes less and
less probable as N, or the size of the list, increases.



4 Sorting Algorithms

5 Showdown Extra for Experts

5.1 (a) What are the advantages and disadvantages of quicksort?

Advantages:

• Faster on average by a constant factor than merge sort

• In-place variant for Θ(1) memory complexity. Including the average-
case call stack brings up space complexity to Θ(log N)

• Multi-pivot quicksort offers greater constant factor optimizations

Disadvantages:

• Most efficient implementations (in-place) are not stable

• Worst-case runtime is in Θ(N2), thus making it a poor choice for adver-
sarial datasets

• Not very good for external sorting

(b) What are the advantages and disadvantages of merge sort?

Advantages:

• Stable

• Good for external sorting

• Constant space usage for sorting linked lists

Disadvantages:

• Slower than quicksort on average

• Higher space complexity for array allocation


	Asymptotics Potpourri
	Vertigo
	QuickCo
	Pivotal Choice
	Showdown Extra for Experts

