
CSM 61B Asymptotic Analysis
Spring 2017 Week 8: March 6, 2017

1 Something Fishy
Give a tight asymptotic runtime bound for each of the following functions. As-
sume array is an M × N matrix (rows × cols).

1.1 public static int redHerring(int [][] array) {

if (array.length < 1 || array [0]. length <= 4) {

return 0;

}

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i]. length; j++) {

if (j == 4) {

return -1;

}

}

}

return 1;

}

Θ(1)

1.2 public static int crimsonTuna(int [][] array) {

if (array.length < 4) {

return 0;

}

for (int i = 0; i < array.length; i++) {

for (int j = 0; j < array[i]. length; j++) {

if (i == 4) {

return -1;

}

}

}

return 1;

}

O(N)

1.3 public static int pinkTrout(int a) {

if (a % 7 == 0) {

return 1;

} else {

return pinkTrout(a - 1) + 1;

}

}



2 Asymptotic Analysis

Θ(1)

1.4 public static boolean scarletKoi(int[] sortedArray , int x) {

int N = sortedArray.length;

return scarletKoi(sortedArray , x, 0, N);

}

private static boolean scarletKoi(int[] sortedArray , int x, int start , int end) {

if (start == end || start == end - 1) {

return sortedArray[start] == x;

}

int mid = end + ((start - end) / 2);

return sortedArray[mid] == x ||

scarletKoi(sortedArray , x, start , mid) ||

scarletKoi(sortedArray , x, mid , end);

}

O(N)

This method is a trap, as it seems like a binary search. But in the recursive case, we
make recursive calls on both the left and right sides, without taking advantage of the
sorted array. We can craft an input that requires exploring the entire array in linear
time.

2 Amortized Analysis
2.1 Mallory is designing a resizing ArrayList implementation. She needs to decide the

amount to resize by. Help her figure out which option provides the best runtime.

Assuming Mallory resizes her ArrayList when it’s full, what is the average run-
time of adding an element to the ArrayList?

(a) When full, increase the size of array by 10,000 elements.

This would still be in Θ(N) since the constant, 10,000, does not scale with the
size of the array. We’re resizing the array every 10,000 inputs, regardless of
the size of the array which could be much larger than 10,000.

(b) When full, double the size of the array.

This would be in Θ(1) since at any given length, N, we can insert N/2 ele-
ments before having to resize.



Asymptotic Analysis 3

3 Triple Trouble
3.1 Given a linked list of length N, provide the runtime bound for each operation.

Recall that IntList is the naive linked list implementation, SLList is an encapsu-
lated singly-linked list with a front sentinel, and LinkedList is Java’s encapsulated
doubly-linked list implementation with pointers to the first and last node.

Operation IntList SLList LinkedList

size() Θ(N) Θ(1) Θ(1)

get(int index) O(N) O(N) O(N)

addFirst(E e) Θ(1) Θ(1) Θ(1)

addLast(E e) Θ(N) Θ(N) Θ(1)

addBefore(E e, Node n) O(N) O(N) Θ(1)

remove(int index) O(N) O(N) O(N)

remove(Node n) O(N) O(N) Θ(1)

reverse() Θ(N) Θ(N) Θ(N)

(a) Give the runtime of addAll(Collection<E> c) assuming an empty linked list
and c of size N. Assume addAll is implemented by calling addLast repeatedly.

IntList: Θ(N2)

SLList: Θ(N2)

LinkedList: Θ(N)

(b) How can we do better?

Instead of calling addLast, keep track of the last node and append each new
element in constant time to the end of the list.



4 Asymptotic Analysis

4 Nearest Duplicate Extra for Experts

4.1 Define a procedure, nearestDuplicate, that accepts a String[] array and returns
the string closest to its duplicate. For example, if given the following input:

{ "all", "work", "and", "no", "play", "makes", "for", "no", "work", "no", "fun", "and", "no", "results" }

nearestDuplicate would return no because the second and third no’s are the clos-
est. This function should run in O(N) time, where N is the size of the array.

public static String nearestDuplicate(String [] array) {

int min = Integer.MAX_VALUE;

String duplicate = null;

Map <String ,Integer > nearestIndices = new HashMap <>();

for (int i = 0; i < array.length; i++) {

String s = array[i];

if (nearestIndices.containsKey(s) && i - nearestIndices.get(s) < min) {

min = i - nearestIndices.get(s);

duplicate = s;

}

nearestIndices.put(s, i);

}

return duplicate;

}


	Something Fishy
	Amortized Analysis
	Triple Trouble
	Nearest Duplicate Extra for Experts

