

Final Review Document
CS 61B Spring 2017

Antares Chen + Kevin Lin

Introduction
Wow this semester has gone by really fast. But before you guys can finish up this class and
beat the game, there is one last boss - the final! The final is going to be cumulative across all
the topics we’ve covered this semester. Anything that was mentioned in class is fair game.

Now, this packet will provide supplementary problems on topics covered after midterm 2. Like all
previous packets, these questions are ranked by difficulty, but in no way is this packet
comprehensive! Most notably, it lacks coding challenges since it’s targeted to test your
conceptual understanding of the topics. Further, it lacks a few hard questions since the
questions I’ve thought of would probably detract from your studying.

For this final, I want you all to be smart, use your best judgement, and do the work! You have a
little time left to really nail down this studying thing and with that I believe you guys have a great
chance to really knock this test out of the ball park. You may have faltered at times during this
semester and things might have been hard. But like the great fisherman standing in the frozen
sea once said, “​Never give up!​”

Think of all the people cheering you on.

Go out, read the textbook, find practice midterms and really work through them with your
friends. Talk to the TA’s, go to office hours, and use all the resources around you. Needless to
say it is quite useless to continue banging your head against the books if the material doesn’t
stick.

Finally, if you find things becoming too stressful, simply step back, take a deep breath and go
out for a long walk. Come back, remember that you’re awesome and get back to work. Believe
in yourself! And if you don’t then believe in us who believe in you.

Introduction

Disjoint Sets and MST
Easy Mode
Medium Mode
Hard Mode

Out of Sorts
Easy Mode
Medium Mode
Hard Mode

https://www.youtube.com/watch?v=KxGRhd_iWuE

“Yesterday you said tomorrow; so just do it.” - Abraham Lincoln

https://www.youtube.com/watch?v=KxGRhd_iWuE

Disjoint Sets and MST

Easy Mode
Run Forest Run​ For the following graph, draw the MST.

Now run Kruskal’s algorithm using a disjoint set structure on the graph above. After 5 iterations,
what does the disjoint set data structure look like?

Medium Mode
Hidden Weight ​In this graph, some of the edge weights are known, while the rest are unknown.

List all edges that must belong to a minimum spanning tree, regardless of what the unknown
edge weights turn out to be. Justify your answers.

Princeton Schminceton ​Answer the following questions for the graph below. Note that the
edge weights are distinct with values ranging from 1 to 1.

1) Complete the sequence of edges in the MST in the order that Kruskal’s algorithm

includes them.

1 ____ ____ ____ ____ ____ ____ ____

2) Suppose that the edge D-I of weight w is added to the graph. For which values of w is
the edge D-I in a MST?

3) Given a minimum spanning tree T of a weighted graph G, describe an O(V) algorithm
for determining whether or not T remains a MST after an edge (x, y) of weight w is
added.

Princeton Part 2 ​Suppose that a MST of the following edge-weighted graph contains the edges
with weights x, y, and z.

1) List the weights of the other edges in the MST in ascending order of weight

10 ____ ____ ____ ____ ____

2) Circle which one or more of the following can be the value of x?

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

3) Circle which one or more of the following can be the value of y?

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

4) Circle which one or more of the following can be the value of z?

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

Constant Kruskal’s​ Suppose that for a given graph G, the weights of its edges are in the range
1 to V where V is the number of vertices. How fast can Kruskal’s algorithm run?

What if the edge weights are integers in the range 1 to W where W is an asymptotic variable?

Hard Mode
Random MST Properties ​State if the following are true or false. If they are true, provide an
informal argument else provide a counterexample.

1) Suppose G is a graph and T is a MST of G. If we decrease the weight of any edge in T,
then T is still a MST.

2) A graph has a unique minimum spanning tree if, for every cut of the graph (every way
you can split a graph into two separate parts), there is a unique light edge crossing the
cut.

Update MST​ Suppose instead of decreasing the weight of an edge in the MST, we decrease
the weight of any random edge not in the MST. Give an efficient algorithm for finding the MST in
the modified graph.

Out of Sorts

Easy Mode
Classify the Sorts ​Answer the following questions assuming you have some input lists where N
is the list’s size.

1) List all the sorts that run worst case O(N​2​).

2) List all the sorts that run worst case O(N log N).

3) List all the stable sorts.

Fill the Table​ Fill in the cells of the following table.

Algorithm Best case
runtime

Worst case
runtime

Best case example Worst case example

Heap Sort

Quicksort

Merge Sort

Selection Sort

Insertion Sort

Radix Sort

Run the Sorts ​Listed below are partially sorted lists, that would occur in the middle of running a
sort on the input list. For each partially sorted list, name the algorithm that may have sorted it.
Choices include heapsort, quicksort (assuming the first element as the pivot), mergesort,
insertion sort, LSD radix sort, MSD radix sort and selection sort.

1) 12, 7, 8, 4, 10, 2, 5, 34, 14
7, 8, 4, 10, 2, 5, 12, 34, 14
4, 2, 5, 7, 8, 10, 12, 14, 34

2) 23, 45, 12, 4, 65, 34, 20, 43

4, 12, 23, 45, 65, 34, 20, 43

3) 12, 32, 14, 11, 17, 38, 23, 34
12, 14, 11, 17, 23, 32, 38, 34

4) 45, 23, 1, 65, 34, 3, 76, 25
23, 45, 1, 65, 3, 34, 25, 76
1, 23, 45, 65, 3, 25, 34, 76

5) 23, 44, 12, 11, 54, 33, 1, 41
54, 44, 33, 41, 23, 12, 1, 11
44, 41, 33, 11, 23, 12, 1, 54

Average Case Runtimes​ What are the average case runtimes for quicksort and insertion sort?

Medium Mode
Conceptual Questions

1) Give an example of when insertion sort is more efficient than mergesort.

2) When would you use mergesort over quicksort?

3) When would you use radix sort over a comparison sort?

Design Questions

1) You have an array of integers where the length = N and the maximum number of digits
is given by K. Suppose that K >> N (that is K is much larger than N). What sort would
you use?

2) Assume for the previous question that you used LSD radix sort. What is the runtime?

3) Suppose you are given an integer array with length = N such that there are N - sqrt(N)
copies of the minimum element located in the front of the array. What is the worst case
runtime of insertion sort on this list?

4) For the same construction, what is the worst case runtime of selection sort?

Hard Mode
CS 61B Lane
The rent is too dang high in Berkeley and so you decide to buy a house located at the idyllic CS
61B Lane. CS 61B Lane is, of course, a friendly neighborhood and so everyone who lives on
CS 61B Lane is automatically friends with her two closest neighbors.

For example, on CS 61B Lane we may have houses for: Aidan, Kevin, Kaylee, Ching, Alex, and
Matt . Here Kaylee is friends with Aidan, Kevin, Ching and Alex while Alex is friends with 1

Kaylee, Ching, and Matt.

Let us represent CS 61B Lane as an array of House objects. Each House object has two
instance variables: the owner’s name and the address. Now given an array of N houses in ​no
particular order​, give an algorithm that returns a data structure such that when you query the
data structure with a person’s name, it will return to you a list of friends.

Suppose you are given an array of objects ​House​ in no particular order. Each House object has
two fields: the owner’s name and the address. Now suppose we are given the array for CS 61B
Lane. However, CS 61B Lane is a friendly neighborhood, so every owner is friends with the two
closest houses.

Provide a the best possible. runtime bound for construction of and querying from the data
structure.

1 Antares actually lives in a box off the side of Euclid...

