
CS 61B Spring 2017 Guerrilla Section 2 Worksheet

12 February 2017

Directions: In groups of 4-5, work on the following exercises. Do not proceed to the next exercise until
everyone in your group has the answer and understands why the answer is what it is. Of course, a topic
appearing on this worksheet does not imply that the topic will appear on the midterm, nor does a topic not
appearing on this worksheet imply that the topic will not appear on the midterm.

1 ADT Selection

Suppose we’d like to implement the SortedList interface. It’s API looks like this:

1 public interface SortedList {
2 /* Initialize a SortedList with one element. */
3 public SortedList(int elem);
4

5 /* Get the element at index i. */
6 public int get(int i);
7

8 /* Merge this list with other. Postcondition: this SortedList must remain in sorted
order */

9 public void merge(SortedList other);
10 }

1. Suppose we’d like to perform merge operations between lists using only a constant amount of additional
memory. Should SortedList be implemented using an internal linked list or an internal array?

2. Now suppose we’d like to optimize the speed of our SortedList data stucture’s get operations. Again,
select an internal data structure (array or linked list) for SortedList.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

1

CS 61B Guerrilla Section 2 Worksheet

2 ALists

Here’s an incomplete implementation of the AList class.

1. Implement the delete(int index) method, which deletes the array element at index i and shifts the
remaining elements of the array up. You may assume that i is between 0 and size - 1, inclusive. If
delete causes the load on items to be less than .25 (that is, if items becomes less than a quarter full),
resize items to be half its current capacity.

2. Write the integer that would be printed on the line next to the System.out.println(...) methods in
the main method.

1 public class AList {
2 public int size;
3 public int[] items;
4

5 public AList() {
6 size = 0;
7 items = new int [2];
8 }
9

10 /** Capacity doubles whenever the size exceeds the capacity. */
11 public void insertBack(int x) { }
12

13 public int getBack () { }
14

15 public int deleteBack () { }
16

17 public int get(int index) { }
18

19 public int capacity () {
20 return items.length;
21 }
22

23 /** This will be used by insertBack(int x), deleteBack () and delete (). */
24 public void resize(int newCapacity) { }
25

26 public int delete(int index) {
27 /* Your implementation. */
28

29

30

31

32

33

34

35

36

37

38

39

40 }
41

42 public void main(String [] args) {
43 AList alist = new AList();
44 for (int i = 0; i < 5; i++) {
45 alist.insertBack(i);
46 }
47 System.out.println(alist.size); _____

Spring 2017 2

CS 61B Guerrilla Section 2 Worksheet

48 System.out.println(alist.capacity ()); _____
49 alist.deleteBack ();
50 alist.deleteBack ();
51 System.out.println(alist.capacity ()); _____
52 alist.deleteBack ();
53 alist.deleteBack ();
54 System.out.println(alist.size); _____
55 System.out.println(alist.capacity ()); _____
56 }
57 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2017 3

CS 61B Guerrilla Section 2 Worksheet

3 Abstract classes

1. What are advantages and disadvantages of abstract classes and interfaces?

2. Consider this school class:

1 public class School {
2 String name;
3 int numStudents;
4

5 public void cheer() {
6 System.out.println("I have no idea what to say.");
7 }
8

9 public void enrollStudent () {
10 numStudents += 1;
11 if (numStudents % 1000 == 0) {
12 System.out.println("We have " + numStudents + " students!");
13 }
14 }
15

16 public void expelStudent () {
17 students -= 1;
18 }
19 }

Enrolling and expelling students makes sense but we don’t know what a School should do for its cheer.
We intend to make subclasses of schools that have their own special way of cheering. How should we
rewrite school? Mark changes on the prewritten class above.

Spring 2017 4

CS 61B Guerrilla Section 2 Worksheet

3. We want to create a University class so we can create school instances of different education levels.
Oski tried his best, but he didn’t take CS61B. University cheers should output the name followed by
a space and the motto. Also, Oski forgot that Universities congratulate students upon enrolling them.
In addition to doing what enroll currently does, the method should also print ”Congratulations!”. Fix
Oski’s University class so it compiles and follows University behaviors. (Try to add as few lines as
possible. Feel free to cross things out.)

1 public class University extends School {
2

3

4 public University(String name , String motto) {
5

6

7 }
8

9 public String cheer() {
10 String chant = name + ’ ’ + motto;
11 System.out.println(chant);
12 return chant;
13 }
14

15

16

17

18

19

20

21 }

4. Stanford thinks they are too cool for school. They wrote their own class following University guidelines.
But it’s quite unnecessary.

1 public class Stanfurd {
2 public void cheer() {
3 System.out.println("Stanfurd is 2cool4skool");
4 }
5

6 public void enrollStudent () {
7 numStudents += 1;
8 if (numStudents % 1000 = 0) {
9 System.out.println("We have " + numStudents + " students!");

10 }
11 System.out.println("Congratulations!")
12 }
13

14 public void expelStudent () {
15 students -= 1;
16 }
17 }

Show how simple it is to create an School instance of Stanfurd with the same functionality.

School Stanfurd = ;

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2017 5

CS 61B Guerrilla Section 2 Worksheet

4 What Would Java Display?

Consider the following classes. What is the output after running the main method in the Monster class?

1 class Ghoul extends Monster {
2 public Ghoul() {
3 System.out.println("I am a ghoul.");
4 }
5

6 public void spook() {
7 System.out.println("I’m so ghoul: " + noise);
8 System.out.println("I am " + spookFactor + " spooky.");
9 }

10

11 public static void mash(Ghoul g) {
12 System.out.println("boogity boo: ");
13 g.spook();
14 //spook();
15 }
16

17 public void haunt() {
18 System.out.println("ERRERERRRRERRR");
19 mash(this);
20 }
21 }
22

23 public class Monster {
24 protected String noise = "blargh";
25 public static int spookFactor = 5;
26

27 public Monster () {
28 System.out.println("Muhahaha !!!");
29 }
30

31 public void spook() {
32 System.out.println("I go " + noise);
33 System.out.println("I am " + spookFactor + " spooky.");
34 }
35

36 public static void mash(Monster m) {
37 System.out.println("Monster: ");
38 m.spook();
39 }
40

41 public static void main(String [] args) {
42 // part a
43 System.out.println("Part a:");
44 Monster m = new Monster ();
45 m.mash(m);
46

47 System.out.println("Part b:");
48 Monster g = new Ghoul();
49 g.mash(g);
50

51 System.out.println("Part c:");
52

53 g.spookFactor = 10;
54 m.mash(m);
55

Spring 2017 6

CS 61B Guerrilla Section 2 Worksheet

56 System.out.println("Part d:");
57

58 Ghoul ghastly = new Ghoul();
59 m = ghastly;
60 ghastly = (Ghoul) m;
61 ghastly.haunt();
62 m.mash(ghastly);
63 }
64 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2017 7

CS 61B Guerrilla Section 2 Worksheet

5 Vehicle Interfaces

Henry Hacker wrote up two Vehicle classes Car and Plane. He notices that most if not all Vehicles will need
to check their lights and gas for a maintainence report. He also wants to enforce having all Vehicles be able
to check lights and gas as well as provide a maintainence report. Below, write an interface for Vehicle

1 public class Car implements Vehicle{
2 private int gas;
3 private boolean lightsWork;
4 public void honk() {
5 System.out.println("Honk!");
6 }
7 public void checkLights () {
8 if (! lightsWork) {
9 System.out.println("Lights are broken.");

10 }
11 }
12 public void checkGas () {
13 if (gas < 3) {
14 System.out.println("Need more gas.");
15 }
16 }
17 public void reportMaintenence () {
18 checkGas ();
19 checkLight ();
20 }
21 }
22 public class Plane implements Vehicle {
23 private int gas;
24 private int battery;
25 public void checkGas () {
26 if (gas < 1000) {
27 System.out.println("Should refuel before flying.");
28 }
29 }
30 public void checkLights () {
31 if (battery < 10) {
32 System.out.println("Should replace battery for lights.");
33 }
34 }
35 public void reportMaintenence () {
36 checkGas ();
37 checkLight ();
38 }
39 }

Spring 2017 8

CS 61B Guerrilla Section 2 Worksheet

6 Inheritance Bonus

(From Fall 2014, Midterm 1.)
Fill in the blanks and cross out and rewrite lines of code in the Animal and Dog classes so that Foo.java
compiles and prints out the following lines:
1
2
3
Superdog
Superdog
bark 3
4

Do not cross out a line and replace it with multiple lines (i.e. just rewrite the line you cross out). Do
not add new lines of code anywhere except the blanks provided. Do not modify Foo. Do not modify any
lines that say ”do not modify”

1 import zoo.Animal;
2 import housepets.Dog;
3 public class Foo { // Do not modify class Foo
4

5 public static void main(String [] args) {
6 Animal a = new Dog();
7 Animal b = new Dog();
8 Animal c = new Dog();
9 a.makeNoise ();

10 b.makeNoise ();
11 a.makeNoise ();
12 c.sayName ();
13 a.sayName ();
14 a.makeNoise("bark");
15 c.makeNoise ();
16 }
17 }

1 package zoo;
2

3 public class Animal {
4

5 int noise;
6 private String name; // Do not modify
7

8 public Animal(String name) {
9 name = name;

10 }
11

12 public void makeNoise () {
13 ____________;
14 System.out.println(________);
15 }
16

17 public void sayName () {
18 System.out.println(name);
19 }
20

21 _________________________________;
22 }

Spring 2017 9

CS 61B Guerrilla Section 2 Worksheet

1 package housepets;
2 import zoo.Animal;
3

4 public class Dog {
5

6 public Dog() {
7 _____________________;
8 }
9

10 public void makeNoise(String sound) {
11 System.out.println(sound + " " + ___________);
12 }
13 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2017 10

CS 61B Guerrilla Section 2 Worksheet

7 HOF

Use these two interfaces for the following problems.

1 public interface BinaryFunction {
2 public int apply(int x, int y);
3 }
4

5 public interface UnaryFunction {
6 public int apply(int x);
7 }

1. Implement the Adder class below, which should implement the BinaryFunction interface and add two
numbers together.

1 public class Adder ________________________________ {
2 int apply(int x, int y) {
3

4 }
5 }

2. Implement the Add10 class. It should have a single method ?apply? that takes in a single integer x
and returns x + 10 without using any of the +-*/ operators.

1 public class Add10 ________________________________ {
2

3

4

5 int apply(int x) {
6

7 }
8 }

3. Finish the implementation of the AddX0 class. It should take in an integer to its constructor and its
apply method should add 10 times that integer to whatever is passed in without using any of the +-*/
operators (except to increment indices in for/while loops).

1 public class AddX0 ________________________________ {
2

3

4

5

6

7 public AddX0(int num) {
8

9 }
10

11 public int apply (int x) {
12

13

14

15

16 }
17 }

4. Fill in the implementation of the Multiplier class below. Its apply method should take in two ints
(x and y) and return x * y without using any of the +-*/ operators (except to increment indices in
for/while loops). You may assume that all inputs are positive.

Spring 2017 11

CS 61B Guerrilla Section 2 Worksheet

1 public class Multiplier ________________________________ {
2

3

4

5

6 public int apply(int x, int y) {
7

8

9

10

11

12 }
13 }

5. Bonus: Rewrite the apply method of the Multiplier class below to take negative inputs into account.
You still may not use the +-*/ operators, with the exception that you may use the unary version of
the - operator to negate numbers.

1 public int apply(int x, int y) {
2

3

4

5

6

7

8

9

10

11 }

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this section!

Spring 2017 12

	ADT Selection
	ALists
	Abstract classes
	What Would Java Display?
	Vehicle Interfaces
	Inheritance Bonus
	HOF

