
Optional. Mark along the line to show your feelings Before exam: [____________________].
on the spectrum between  and . After exam: [____________________].

UC Berkeley – Computer Science
CS61B: Data Structures

Midterm #2, Spring 2015

This test has 10 questions worth a total of 35 points. The exam is closed book, except that you are
allowed to use two (front-and-back) handwritten pages of notes. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write the
statement out below in the blank provided and sign. You may do this before the exam
begins.

“I have neither given nor received any assistance in the taking of this exam.”

__
__

 Signature: ________________________

Your Name: ________________________

Your Student ID: __________________
Three-letter Login ID: ____________

 Login of Person to Left: ___________
Login of Person to Right: _________
Exam Room: _______________________

Tips:

 There may be partial credit for incomplete answers. Write as much of the solution as you
can, but bear in mind that we may deduct points if your answers are much more
complicated than necessary.

 There are a lot of problems on this exam. Work through the ones with which you are
comfortable first. Do not get overly captivated by interesting design issues or complex
corner cases you’re not sure about.

 Not all information provided in a problem may be useful.
 All code that we’ve providedon this exam should compile. All code has been compiled and

executed before printing, but in the unlikely event that we do happen to catch any bugs in
the exam, we’ll announce a fix. The correct answer is not ‘does not compile.’

 Don’t panic! Recall that we shoot for around a 60% median. You should not expect to be
able to do all of the problems on this exam.

 If you’re feeling anxious and need to take a break, go for it. Just let a TA know, and leave
your test and electronic devices behind.

 Points Points

0 0.5 5 2.5

1 6 6 6

2 5 7 2

3 2 8 3.5

4 5 9 0

 10 2.5

 UC BERKELEY

Login: _______

 2

0.Another half point.(0.5 points).Write your name, login, and ID on the front page. Write your exam

room. Write the IDs of your neighbors. Write the given statement and sign. Write your login in the

corner of every page. Enjoy your free half point. 

1. Basic Operations (6 Points).

a. To the right of the BST below, draw a BST that results if we delete 20 from the BST. You should

use the deletion procedure discussed in class (i.e. no more than 4 references should change).

b. To the right of the minHeap below, draw the minHeap that results if we delete the smallest item

from the minHeap.

c. To the right of the External Chaining Hash Set below, draw the External Chaining Hash Set that

results if we insert 5. As part of this insertion, you should also resize from 4 buckets to 8 (in other

words, the implementer of this data structure seems to be resizing when the load factor reaches1.5).

Assume that we’re using the default hashCode for integers, which simply returns the integer itself.

CS61B MIDTERM, SPRING 2015

Login: _______

 3

d. Draw a valid Weighted Quick Union object that results after the following calls to connect:

connect(1, 4), connect(2, 3), connect(1, 3), connect(5, 1). Don’t worry about the order

of the arguments to each connect call, we’ll accept any reasonable convention.

2. Asymptotics (5 Points)

a. Suppose we run experiments to understand the runtime performance of the add method of the

PotatoSack class. The runtime as a function of N (the number of inserts) is shown below. Using the

technique from the asymptotics lab, approximate the empirical run time in tilde notation as a function

of N. As a reminder, in that lab, we assumed that the runtime is ~𝑎𝑁𝑏 , and found𝑎 and 𝑏.Do not leave

your answer in terms of logarithms. Your 𝑎and 𝑏must be within 25% of our answers. Use only the data

points that you expect to give the best approximation of the asymptotic behavior of the algorithm.Hint:

To double check your answer, plug in N=1000 and see if the runtime prediction seems sensible.

N Time (s)

 1 0.00

 2 0.01

 3 0.01

 6 0.03

 13 0.16

 25 0.63

 50 2.50

 100 9.97

 Answer:

b. Suppose we measure the performance of a collectionX, and find that inserting N items takes 𝛩 𝑁2
time. For each of the following, circle the collection type if it is possible for that collection to take

𝛩 𝑁2 time to insert N items on a worst-case input, and cross out the collection type if it is

impossible. Assume that each is correctly implemented. Either circle or cross out every answer.

c. If we have two correct algorithms for solving the same problem that use the exact same amount of

memory, but have worst-case runtimes that are Θ 𝑁 and Θ 𝑁2 , is it always better to use the algorithm

that is Θ 𝑁 ? If so, why? If not, why not?

LinkedList
2-3 Tree

Set
HeapMinPQ

LLRBST
Set

Your BSTMap

(from HW6)

External
Chaining
Hash Map

ArrayList

 UC BERKELEY

Login: _______

 4

3. Exceptions (2 Points).

One common software engineering strategy is to create log files that can be manually examined if

something goes wrong. In the code below, the writeToLog method writes the given argument to some

log. What are the contents of the log file after the code below is executed? You may not need all of the

lines provided.

public class QuestionThree {
 public static void printTenth(int[] a) {
 try {
 writeToLog(a[10]);
 } catch(IndexOutOfBoundsException e) {
 writeToLog("No tenth item available!");
 throw(e);
 }
 }

 public static void main(String[] args) {
 printTenth(new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
 printTenth(new int[]{0, 1, 2, 3});
 printTenth(new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
 }
}

This area is a designated fun zone. Perhaps you would like to compose a poem in your native language

about some topic of interest? Or perhaps you’d like to draw a dog with an overly ornate moustache?

CS61B MIDTERM, SPRING 2015

Login: _______

 5

4. TreeTime (5 Points).

a. True or false: If A and B are 2-3-4 trees with the same exact elements, they must be identical. If true,

justify with a short (less than 20 word) explanation. If false, provide a counter-example.

b. Draw the red-black tree which results after calling insert(25) on the red-black tree shown below.

We denote red links with dashed lines and black links with normal lines. Please use the same notation in

your answer.You should draw your tree in the empty space to the right of the given tree. Do not

modify the given figure.Hint: Every 2-3 tree corresponds to exactly one LLRB, and every LLRB

corresponds to exactly one 2-3 tree.

 UC BERKELEY

Login: _______

 6

c. Suppose that we want to write a method sumDescendants, which replaces the value of each
node in a tree with the sum of all of its descendants' values (not including itself), and then returns
the sum of its original value (before being changed) plus all of its descendants’ values.

For example, given the tree on the left, sumDescendants on node 6 would return 42 and change
the tree to look like the one on the right (since 36 + 6 = 42).

 6 36
 / \ / \
 4 8 8 16
 / \ / \ / \ / \
 3 5 7 9 0 0 0 0

Fill in the sumDescendants method. You may not need all lines. Do not use more lines.

 public class TreeNode {
 public TreeNode left, right;
public int value;

 public TreeNode(int n) {
 value = n;
 }

 /* Replaces value with sum of all of its descendants' values. */
 public int sumDescendants() {
 if (left == null && right == null) {
 int oldVal = value;
 ___________________________;
 return oldVal;
 }
 else {

 int oldVal = value;
 ___________________________;
 return oldVal + value;
 }
 }
}

CS61B MIDTERM, SPRING 2015

Login: _______

 7

5. Code Analysis (2.5 points).

For each of the pieces of code below, give the runtime in Θ(·) notation as a function of the given

parameters. Your answer should be simple, with no unnecessary leading constants or unnecessary

summations.

________ public static void f1(int n) {
 for (int i = 0; i < 2*n; i += 1) {
 System.out.println("hello");
 }
}

________ public static void f2(int n) {
 if (n == 0) { return; }
 f2(n/2);
 f1(n);
 f2(n/2);

}

________ public static void f3(int n) {
 if (n == 0) { return; }
 f3(n/3);
 f1(n);
 f3(n/3);
 f1(n);
 f3(n/3);

}

________ public static void f4(int n) {
 if (n == 0) { return; }
 f4(n-1);
 f1(17);
 f4(n-1);

}

________ public static void f5(int n, int m) {
if (m <= 0) {

return;
} else {

for (int i = 0; i < n; i += 1) {
 f5(n, m-1);
}

}
}

 UC BERKELEY

Login: _______

 8

6. The Right Tool for the Job (6 points).

For each of the five tasks below, pick one or two data structures and describe very briefly (in 20

words or less) how you’d usethose data structures to solve the problem. You should select from the

following Java Collections: TreeMap, TreeSet, HashMap, HashSet, LinkedList, ArrayList, HeapMinPQ,

HeapMaxPQ, WeightedQuickUnion. TreeMap and TreeSet utilize red-black trees. HashMap and

HashSet utilize external chaining.

You should pick the data structure (or structures) that are best suited to the task in terms of performance

and ease-of-use, taking into account the specific types of inputs listed in each problem.For most

problems, you should need only one data structure. If some part of the problem seems ambiguous, state

the assumptions that you’re making.

For each task, also give the runtime in 𝑶 ⋅ notation. Give the tightest bound you can (e.g. don’t

just write 𝑂 𝑛𝑛𝑛𝑛
 , which while technically correct, isn’t very informative).

Task 1)Read in a text file and print all of the unique words that appear. The words should be printed in

alphabetical order.Give the O ⋅ runtime in terms of N, the number of words in the file. Remember, you

must provide either a choice of either one or two data structures, as well as a short (< 20 word)

description of how you’d use those data structures to solve the problem.

Task 2)Given two Collections of very long Strings (e.g. DNA Sequences of tens of thousands of

characters or more), observed and known, check each String in observed to see if it exactly matches

any String in known. observed is an ArrayList<String> of size 𝑁𝑂. For this task, choose a data

structure for known. Give the O ⋅ runtime in terms of 𝑁𝑂 and 𝑁𝐾 , where 𝑁𝐾 is the size of known.

Assume that the Strings in known are highly dissimilar from each other. Assume also that known has

already been constructed.

CS61B MIDTERM, SPRING 2015

Login: _______

 9

Task 3)Read in a large number of grayscale images, and display all of the unique images. The images

may be displayed in any order. Each image is stored as a Picture object that contains

anint[][]variable,all of which are512 x 512 (i.e. have a width and height of 512).Give the O ⋅

runtime in terms of N, the number of images.

Task 4) Store the email address for each username on our website, which is devoted to

publishingarticles about computer hackers being terrible people. Usernames and email addresses are

both Strings(and thus use the default .hashCode and .compareTo method). Our website allows

anybody to register any number of accounts.Give the O ⋅ runtime needed to add each user in terms of

N, the current number of users.

Task 5)Erweitetern Netzwerkis a new German minimalist social network that provides three functions.

Its user base is capped at a maximum of K users, where K is some large constant known at runtime:

 Neu: Enter a username and click the Neu button. Create a new user with this username if space is

still available.

 Befreunden: Enter two usernames and click the befreunden button. The users are now friends.If

one of the users does not exist, ignore the command.

 Erweiterten Netzwerk: Enter two usernames and click the Erweitertern Netzwerk button. The

website prints true if there is a chain of user friendships that connect the users.

Your Neu, Befreunden, and Erweiterten Netzwerk commands must run in O(log N) time in the worst

case. Give the O ⋅ runtime in terms of N, the number of users at the time the command was executed.

Assume that K > N.

 UC BERKELEY

Login: _______

 10

7. GorpyCorp (2 points).

Gorpy McGorpGorp is the founder ofGorpyCorp. GorpyCorp is organized into several independent

teams known as ”Circles”, where every Circle has a leader known as a “lead link”. Gorpy uses the

following data structure to record the membersand teamName of each Circle:

public class Circle {

HashSet<Member> members;
String teamName;

public int hashCode() {
 int hashCode = 0;
 for (Member m : members) {

hashCode = hashCode * 31 + m.hashCode();
 }

 hashCode = hashCode + teamName.hashCode();
 return hashCode;
}

public int compareTo(Circle other) {
 if (this.members.size() == other.members.size())
 return this.teamName.compareTo(other.teamName);
 return this.members.size() – other.members.size();
}

public void addMember(Member newMember) {
 members.add(newMember);
}

...

}

Rather than storing the leader of each Circle inside of the Circle object, Gorpy instead decides to create

a separate HashMap defined below, which allows a programmer to lookup the lead linkof each circle.

HashMap<Circle, Member>leadLinks;

What is the most significant problem with Gorpy’s usage of a HashMap? If he uses a TreeMap instead

of a HashMap, will this problem be fixed? Why or why not?

CS61B MIDTERM, SPRING 2015

Login: _______

 11

8. By the Numbers (3.5 Points).

For each of the scenarios below, give the correct numbers. On each line, in the first blank write the

minimum, and in the second blank write the maximum. We define the height as the maximum

number of links from the root to a leaf (so the tree in problem 1b has a height of 3, not 4). Each blank is

worth 0.25 points (so don’t burn all your time trying out bajillions of examples).

____ ____ The minimum and maximum height of a BST with 15 nodes.

____ ____ The minimum and maximum height of a Quick Union object with 15 elements where

 isConnected(a, b) returns true for every pair of items.

____ ____ The minimum and maximum height of a Weighted Quick Union object with 15 elements

whereisConnected(a, b) returns true for every pair of items.

____ ____ The minimum and maximum height of a 2-3-4 Tree containing 15 items. Recall that a

 node in a 2-3-4 tree may have 1, 2, or 3 items inside.

____ ____ The minimum and maximum height of an LLRB set containing 15 items.

____ ____ The minimum and maximum height of a binary heap containing 15 items.

____ ____ The minimum and maximum number of items in a single bucket for a chaining hash table

 with 30 items and 15 buckets (i.e. with a load factor of 2).

9. PNH (0 Points). Who was the agoyatis of Mr. Conchis?

 UC BERKELEY

Login: _______

 12

10. Quartiler (2.5 points)

Warning: This problem is particularly challenging. Do not start until you feel like you’ve done

everything else you can. We will be award very little partial credit for this problem. Solutions which

are correct but do not meet our time and space requirements (below) will be not be awarded credit.

The interface for the Quartiler interface is shown below.

public interface Quartiler<Item> {
 /* Adds an item to the Quartiler. */
 public add(Item x);
 /* Gets the item that is closest to the 75th percentile. */
 public getTopQuartile();
 /* Deletes the item that is closest to the 75th percentile. */
 public deleteTopQuartile();
}

For example, if we add the integers 1 through 100, then getTopQuartilewill return 75. If we instead

add the integers 1 through 4 to an empty Quartiler, then getTopQuartile will return 3. If there is a

tie (e.g. if the Quartlier contains the integers 1 through 6), then ties may be broken arbitrarily. Design

a data structure that supports these operations in amortized 𝑂(log 𝑁)time and 𝑂(𝑁) space.

a. Describe your data structure as concisely as possible while still including all relevant details. If you

use existing data structure (for example, those listed in problem 6) as components, give them by name.

b. Draw your data structure after the following numbers have been added (in this order): 5, 1, 3, 2, 4, 6,

7, 8. You only need to draw the data structure after all 8 insertions have been completed.

c. Draw your data structure after a subsequent call to deleteTopQuartile (which will remove the 6).

