
CS 61B Discussion 8 Spring 2017
1 More Running Time
Give the worst case and best case running time in Θ(·) notation in terms of M and N.

(a) Assume that comeon() ∈Θ(1) and returns a boolean.
1 for (int i = 0; i < N; i += 1) {
2 for (int j = 1; j <= M;) {
3 if (comeon()) j += 1;
4 else j *= 2;
5 }
6 }

(a) For comeon() the worst case is Θ(NM) and the best case is Θ(N logM). To see this, note
that in the best case comeon() always returns false. Hence j multiplies by 2 each iteration.
The inner loop would execute relative to logM and the outer loop iterates N times. In the worst
case, comeon() always returns false, thus the inner loop iterates M times.

CS 61B, Spring 2017, Discussion 8 1

2 Recursive Running Time
For the following recursive functions, give the worst case and best case running time in the appro-
priate O(·), Ω(·), or Θ(·) notation.

The meta-strat on this problem is to explore a rigourous framework to analyze running time for
recursive procedures. Specifically, one can derive the running time by drawing the recursive tree
and accounting for three pieces of information.

i. The height of the tree.

ii. The branching factor of each node.

iii. The amount of work each node contributes relative to its input size.

(a) Give the running time in terms of N.
1 public void andslam(int N) {
2 if (N > 0) {
3 for (int i = 0; i < N; i += 1) {
4 System.out.println("datboi.jpg");
5 }
6 andslam(N / 2);
7 }
8 }

(b) Give the running time for andwelcome(arr, 0, N) where N is the length of the input
array arr.

1 public static void andwelcome(int[] arr, int low, int high) {
2 System.out.print("[");
3 for (int i = low; i < high; i += 1) {
4 System.out.print("loyal ");
5 }
6 System.out.println("]");
7 if (high - low > 0) {
8 double coin = Math.random();
9 if (coin > 0.5) {

10 andwelcome(arr, low, low + (high - low) / 2);
11 } else {
12 andwelcome(arr, low, low + (high - low) / 2);
13 andwelcome(arr, low + (high - low) / 2, high);
14 }
15 }
16 }

(c) Give the running time in terms of N.
1 public int tothe(int N) {
2 if (N <= 1) {
3 return N;
4 }
5 return tothe(N - 1) + tothe(N - 1);
6 }

CS 61B, Spring 2017, Discussion 8 2

(d) Extra Hard! Give the running time in terms of N

1 public static void spacejam(int N) {
2 if (N == 1) {
3 return;
4 }
5 for (int i = 0; i < N; i += 1) {
6 spacejam(N - 1);
7 }
8 }

(a) andslam(N) runs in time Θ(N) worst and best case. One potentially tricky portion is that
the ∑

logn
i=0 2−i is at most 2 because the geometric sum as it goes to infinity is bounded by 2!

CS 61B, Spring 2017, Discussion 8 3

(b) andwelcome(arr, 0, N) runs in time Θ(N logN) worst case and Θ(N) best case. The
recurrence relation is different for each case. In the worst case you always flip the wrong side
of the coin resulting in a branching factor of 2. Because there is a branching factor of 2, there
are 2i nodes in the i-th layer. Meanwhile, the work you do per node is linear with respect to
the size of the input. Hence in the i-th layer, the work done is about n

2i . In the best case you
always flip the right side of the coin giving a branching factor of 1. The analysis is then the
same as the previous problem!

(c) For tothe(N) the worst and best case are Θ(2N). Notice that at the i-th layer, there are 2i

nodes. Each node does constant amount of work so with the fact that ∑
n
i=0 2i = 2n+1− 1, we

can derive the following.

CS 61B, Spring 2017, Discussion 8 4

(d) For spacejam(N) the worst and best case is O(N ·N!). Now for the i-th layer, the number
of nodes is n · (n− 1) · . . . · (n− i) since the branching factor starts at n and decrements by 1
each layer. Actually calculating the sum is a bit tricky because there is a pesky (n− i)! term in
the denominator. We can upper bound the sum by just removing the denominator, but in the
strictest sense we would now have a big-O bound instead of big-Θ.

CS 61B, Spring 2017, Discussion 8 5

3 Hey you watchu gon do
For each example below, there are two algorithms solving the same problem. Given the asymptotic
runtimes for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither
is always faster, explain why. Assume the algorithms have very large input (so N is very large).

(a) Algorithm 1: Θ(N), Algorithm 2: Θ(N2)

(b) Algorithm 1: Ω(N), Algorithm 2: Ω(N2)

(c) Algorithm 1: O(N), Algorithm 2: O(N2)

(d) Algorithm 1: Θ(N2), Algorithm 2: O(logN)

(e) Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)

(a) Algorithm 1: Θ(N) - Θ gives tightest bounds therefore the slowest algorithm 1 could run is
relative to N while the fastest algorithm 2 could run is relative to N2.

(b) Neither, Ω(N) means that algorithm 1’s running time is lower bounded by N, but does not
provide an upper bound. Hence the bound on algorithm 1 could not be tight and it could also
be in Ω(N2) or lower bounded by N2.

(c) Neither, same reasoning for part (b) but now with upper bounds. O(N2) could also be in O(1).

(d) Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(logN) while Algorithm 1
is constrained on to run FASTEST and SLOWEST by Θ(N2).

(e) Neither, Algorithm 1 CAN be faster, but it is not guaranteed - it is guaranteed to be "as fast as
or faster" than Algorithm 2.

Would your answers above change if we did not assume that N was very large?

Depends, because for fixed N, constants and lower order terms may dominate the function we are
trying to bound. For example N2 is asymptotically larger than 10000N, yet when N is less than
10000, 10000N is larger than N2. This highlights the power in using big-O because these lower
order terms don’t affect the running time as much as our input size grows very large!

CS 61B, Spring 2017, Discussion 8 6

4 More Extra Problems [Final FA15]
If you have time, try to answer this challenge question. For each answer true or false. If true,
explain why and if false provide a counterexample.

(a) If f (n)∈O(n2) and g(n)∈O(n) are positive-valued functions (that is for all n, f (n),g(n)> 0),
then f (n)

g(n) ∈ O(n).

Nope this does not hold in general! Consider if f (n) = n2 and g(n) = 1
n . Readily we have

f (n),g(n) ∈ O(n) but when divided they give us:

f (n)
g(n)

=
n2

n−1 = n3 /∈ O(n)

(b) If f (n) ∈Θ(n2) and g(n) ∈Θ(n) are positive-valued functions, then f (n)
g(n) ∈Θ(n).

This does hold in general! We can think about this in two cases:

• First we ask, when can the ratio f (n)
g(n) be larger than n. As f (n) is tightly bounded (by

Θ) by n2, this is only true when g(n) is asymptotically smaller than n because we are
dividing n2 (this is what happened in part a). However, g(n) is tightly bounded, and thus
lower bounded by n, this cannot happen.
• Next we ask, when can the ratio be smaller than n. Again as f (n) is tightly bounded

by n2, this can only happen when g(n) is asymptotically bigger than n as again we are
dividing. But since g(n) is tightly bounded, and thus upper bounded by n, this too cannot
happen.

So what we note here is that f (n)
g(n) is upper and lower bounded by n hence it is in Θ(n). We can

also give a rigorous proof from definition of part b using the definitions provided in class.

Theorem 4.1. If f (n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued functions, then f (n)
g(n) ∈

Θ(n).

Proof. Given that f ∈ Θ(n2) is positive, by definition there exists k0,k′0 > 0 such that for all
n > N, the following holds.

k0n2 ≤ f (n)≤ k′0n2

Similarly, g ∈Θ(n) implies there exists k1,k′1 > 0 such that

k1n≤ g(n)≤ k′1n

Now consider f (n)
g(n) .

f (n)
g(n)

≤
k′0n2

k1n
=

k′0n
k1
∈ O(n)

f (n)
g(n)

≥ k0n2

k′1n
=

k0n
k′1
∈Ω(n)

As f (n)
g(n) is in O(n) and Ω(n) then it is in Θ(n).

CS 61B, Spring 2017, Discussion 8 7

